
1

Probably more like 30 definitions.

Debt: The First 5000 Years by David GraeberDebt: The First 5000 Years by David Graeber

Money allowed settlement of debt in a universal way, made monetary fines possible

The evolution of legal codes in Sumer and Babylon are illuminative

2

3

Unless you have some use for physical gold, you are accepting it in trade with the

expectation of trading it again. You are using it as a bearer bond, just like cash.expectation of trading it again. You are using it as a bearer bond, just like cash.

4

The guy you are selling to got his money by trading something to someone else. You’ll get

rid of it later by passing it on yet again.rid of it later by passing it on yet again.

Not specific = virtual

The net sum for you is also a barter, and you didn’t have to find the one guy that wanted

exactly what you had and had exactly what you wanted

5

6

7

This slide is new. I did not have it during the presentation, but should have.

8

Another slide of basic info that I should have included, but didn’t.

9

I had intended to start my presentation here, with a discussion of past attempts at

electronic money. Turns out that my memory was faulty and there were only a few of note, electronic money. Turns out that my memory was faulty and there were only a few of note,

so this is very quick.

10

11

12

13

14

15

Grover’s algorithm can “search” SHA-256, or even double SHA-256, but it works on circuits.

Quantum circuits. I’m not entirely sure that a classic SHA-256 circuit (no loops, no Quantum circuits. I’m not entirely sure that a classic SHA-256 circuit (no loops, no

registers) is possible with our current IC production technology. State of the art in quantum

circuits is a handful of gates, and coherence, so far, seems like it is going to be a problem

every time we try to add one more.

Preimage attacks rely on shitty inputs, AKA “your message + specially prepared garbage”.

Bitcoin does not allow arbitrary garbage insertion in most places.

16

Greg Maxwell has looked into this quite a bit.

17

18

19

20

21

22

23

24

It is extremely unlikely that both blocks will be seen by exactly half of the mining power.

One side or the other will have an advantage, and will probably win.One side or the other will have an advantage, and will probably win.

Even if they were even, mining is random, so two MORE blocks within the latency period

are even less likely.

And so on.

25

Fees are dysfunctional right now. For one thing, the subsidy distorts the hell out of the

market.market.

As a result, miners don’t compete.

As a result, senders don’t compete.

Someday, a decent market will rise up.

26

The random output assumption seems to be pretty good, so far.

27

28

my Athlon XP 1800+ with 896 MB RAM can just barely keep up with running 2 nodes

29

30

31

32

33

This means that the same (x,y) point can have two different addresses. This is usually

handled by pretending the other one doesn’t exist.handled by pretending the other one doesn’t exist.

34

35

One exception is the generate transaction, which collects fees and creates new coins

through the subsidythrough the subsidy

This slide was modified to clarify that transactions spend other transactions

36

37

sequence is for creating chains of transactions, it is typically the max value

38

39

Soft disabled. There is a function that checks for standard-ness. If not standard, most

people won’t relay it, and most miners won’t include it in a block.people won’t relay it, and most miners won’t include it in a block.

40

41

The 20 bytes pushed is the pubkey hash, extracted from an address

42

The 0x48 bytes is the signature

The 0x41 bytes is the pubkeyThe 0x41 bytes is the pubkey

43

Spender goes first. The person setting conditions for spending goes last.

44

First we push the signature onto the stack

The signature has a structure, basically the OpenSSL format for a EC signatureThe signature has a structure, basically the OpenSSL format for a EC signature

45

Second, we push the public key. This too has a structure, it is the encoded form from

beforebefore

46

We duplicate the top item, for reasons that will become clear in a moment

47

Now we hash the pubkey

48

Now we push the pubkey hash that was specified long ago when the txout was created

49

OP_EQUALVERIFY does two things. It compares the top two stack items, and leaves either

true (1) or false (0) on the stack in their placetrue (1) or false (0) on the stack in their place

Then it does a verify, if the top stack item is not true, it aborts execution

This lets the sender use the hash of the pubkey, carried as an address, rather than the

pubkey itself. This is smaller, and more secure. If EC is broken some day, the hash is

unlikely to also be broken

50

And finally, OP_CHECKSIG does the whole signature calculation using the pubkey and

compares it to the stored pubkeycompares it to the stored pubkey

51

Pubkey compression (y recovery) makes the savings a little less amazing

still gain security from not exposing your pubkey until redemptionstill gain security from not exposing your pubkey until redemption

Standard transaction types and disabled opcodes negated much of the advantage of

scripting, but only temporarily

52

53

