Bitcoin

2014-01-09
Kyle Jerviss
bitcoin-klug@jerviss.org

What is money?

* If you ask 10 economists, you'll get 15 answers

* Only one definition is useful:
— money is whatever people use as money

Money is a category, different roles
The roles evolved differently through history

Debt is far older than “money”, and was probably
the first thing that we would recognize as being

used as money.

Probably more like 30 definitions.

Debt: The First 5000 Years by David Graeber
Money allowed settlement of debt in a universal way, made monetary fines possible

The evolution of legal codes in Sumer and Babylon are illuminative

What about us?

* For most of us, our checking accounts are the
real money, and physical cash is used as
bearer bonds to transfer between accounts.

* For poorer people, it is the reverse, with cash
being real money, and checks as a way to
move cash.

e Credit cards fit in there somewhere. | use
mine for 100% of ordinary daily transactions.

What do they all have in common?

All money is virtual

All money is debt, sorta

[J

Even gold, usually

Even bitcoin

Unless you have some use for physical gold, you are accepting it in trade with the
expectation of trading it again. You are using it as a bearer bond, just like cash.

Useful way to see money

* Money is an abstraction of barter. You traded
value, you got the promise of value (aka
money, aka debt).

* The debt is not for a specific thing, or from a
specific person.

* The net sum of all money transactions (on an
infinite timeline) is a massive multiparty
barter transaction

The guy you are selling to got his money by trading something to someone else. You'll get
rid of it later by passing it on yet again.

Not specific = virtual

The net sum for you is also a barter, and you didn’t have to find the one guy that wanted
exactly what you had and had exactly what you wanted

The law

* Interestingly enough, most of our laws are
vague about money.

* Words like “money” and “currency” are rarely
defined in a useful way.

* Most laws re: money are unconstitutional.

— See Pieces of Eight by Edwin Vieira Jr. if you want
1722 pages explaining exactly how and why.

* only $200 on Amazon
— But no one cares.

Bitcoin

* Just a ledger
— a public ledger

* You spend it by announcing to the world that you
are giving it to someone else

* Not as novel as you might think.
— Rai stones in the Yap culture

— Way too big to move easily, you owned them because
everyone knew that you owned them, and you spent

them by telling everyone that you were spending
them.

Basics

Bitcoin is a new currency

Not a stored value system
— not redeemable for anything

[

valued based ONLY on market rates

[

No issuer/owner/controller

[]

Don’t really exist (again, just a ledger)

This slide is new. | did not have it during the presentation, but should have.

overloaded

* “Bitcoin”, the name, has many meanings:
— the system
— the software
— the network
— the unit
— a transaction output

Another slide of basic info that | should have included, but didn’t.

history of eMoney

e Smaller list than you’d think

* Digicash from David Chaum, founded in 1990(!)
— Central-ish verification, but used blinded tokens that
were anonymous.
* Flooz, Beenz, InternetCash, etc. — dotcom
boom/bust era, ‘98, ‘99 — all dead by 2001

— Fully centralized, like a multivendor gift card, but
potentially transferrable

— Not worthy of much discussion

| had intended to start my presentation here, with a discussion of past attempts at

electronic money. Turns out that my memory was faulty and there were only a few of note,
so this is very quick.

10

Digicash

Banks signed tokens
Spend by giving token to recipient

Recipient asks bank to transfer value of token
to their account, invaliding the token

Signature is blind — bank can verify that the
token has their signature, but can’t tell which
account it came from

11

Digicash, continued

* This really happened. Actual real live banks
did this.

* Notably, Mark Twain Bank

— You've never heard of it because it was acquired
by MBNA in 1997 for reasons unrelated to
Digicash

12

aside: Blind Signatures

Many forms, most common example is RSA
In RSA, a signature, s = m*d{mod n)

— m is the message (hash), d is the privkey, n is the order
(expressed as key length)

Blinded, the message, m’ = m*r*e (mod n)
— m is the hash, r is random, e is the pubkey

s’ = m’~d(mod n)

r can be removed from s/, leaving s as a valid

signature for m, despite the signer having never
seenm

13

What do we want/need?

* Secure (obvious)
— no double spends
— no unauthorized spends
— no overspends/underspends

* Decentralized (lesson from losing DigiCash)

* Private-ish (lesson from all human history)

14

How do we get those?

Transactions are just simple data structures
with cryptographic signatures (security)

All transactions are verified by the entire
world (security)

To resolve conflicts, transactions are put into a
specific order by miners (decentralized)

New coins are generated over time, by
participants (decentralized)

15

Security - hashes

* Most of the time, hashing in bitcoin means
SHA256(SHA256(x))

* In one place, it means RIPEMD160(SHA256(x))

* Hashing is safe, even from quantum attacks, for
many decades

* In most places, even totally broken hashes (MD5)
would be perfectly fine, other constraints
preclude ALL known preimage attacks

— Output size would be an issue

Grover’s algorithm can “search” SHA-256, or even double SHA-256, but it works on circuits.
Quantum circuits. I’'m not entirely sure that a classic SHA-256 circuit (no loops, no
registers) is possible with our current IC production technology. State of the art in quantum
circuits is a handful of gates, and coherence, so far, seems like it is going to be a problem
every time we try to add one more.

Preimage attacks rely on shitty inputs, AKA “your message + specially prepared garbage”.
Bitcoin does not allow arbitrary garbage insertion in most places.

16

Security - Crypto

* ECDSA
* secp256kl curve
* probably selected because of NSA concerns

— As in, the parameters allow very little freedom, so
the NSA had no opportunity to farm the possible
parameters looking for one with a weakness they
can exploit.

Greg Maxwell has looked into this quite a bit.

17

Security - system

Since all transactions are verified by everyone,
no one can break the rules.

Can’t create extra money

Can’t make you spend more than you
intended

Can’t short the recipient

18

Decentralized

No one owns the system.
No one started with all of the money.

Even the devs have very limited ability to
make changes to the system.

Incompatible changes define an entirely new
system, not a change to the current one.

19

Decentralized

* source code on github: bitcoin/bitcoin

* Like Linux, the power that the devs have, even
within the need to avoid forking, comes solely
from people running their code.

* Changes to give node operators easier control
over their local relay policy set off a
whinepocalypse because it also changed the

default rules.

20

Byzantine Generals

* What stops me from paying two people with
the same coins?

* Obviously the first one is good, and the
second one is invalid.

* But which was first?
— Relativity says “no”.
— Network latency says “Hell no.”

21

A or B?

* The traditional way (digicash) is to have an

issuer approve the first one they see, and
deny the rest.

* Incompatible with “decentralized”

22

Order

* We define an ordering. Transactions happen
in the order they appear in the blockchain.

* Notin the chain? Order undefined.

— beware undefined

[]

Blocks

Ok, but what order are blocks in?

Each has a link to the previous block. Not
valid anywhere else in the tree.

Each takes work to create. Work is tied to that
block, can’t be saved or stored.

The longest chain is the right chain.
— longest defined by work needed to replace

24

Race

* And if there are two branches with equal
amounts of embedded work?

* Pick one, typically the first one you see.
* The situation will resolve itself shortly.

It is extremely unlikely that both blocks will be seen by exactly half of the mining power.
One side or the other will have an advantage, and will probably win.

Even if they were even, mining is random, so two MORE blocks within the latency period
are even less likely.

And so on.

Reward

* Sounds like a lot of work. Why bother?

* The creator of a block gets a reward. The
reward is <subsidy> + <fees>

* Fees come from transactions, people bribing
you to include their transaction in your block

* The subsidy is how new coins are made. It
decreases over time. Was 50, now 25.

Fees are dysfunctional right now. For one thing, the subsidy distorts the hell out of the
market.

As a result, miners don’t compete.

As a result, senders don’t compete.

Someday, a decent market will rise up.

26

Work?

We assume a nearly random distribution of outputs
from our hash function, from 0 to 2/256-1

We set a target. Below the target, you’ve got a block.

Above the target, keep trying.

We can scale the target depending on how many
hashes we want people to need to try, on average, to
find one that meets the criteria

Difficulty started at 1, which corresponds to needing
about 2732 hashes

Difficulty now at 1.418 Billion

Each hash hasa 1in 6,092,331,201,509,460,000
chance

The random output assumption seems to be pretty good, so far.

27

Why scale?

Difficulty scaling decouples the block rate
from the work rate.

Work now happening 1.5 billion times faster
than in 2009. Blocks still coming about once
per 10 minutes.

Also the subsidy rate (aka money creation
rate).

related to orphan rate

28

The network

 flooding p2p network
* simple messages

* running a full node takes some resources
— worst is the (currently) ~20 GB storage for the
block chain
* My ancient Athlon XP 1800+ can just barely keep up
running two nodes
— takes a while to sync up — the bootstrap torrent
can help somewhat

my Athlon XP 1800+ with 896 MB RAM can just barely keep up with running 2 nodes

29

[]

[J

[

Clients

Only a few (full) clients exist

Writing a new client is damn hard

human-readable specs are (necessarily)

incomplete

you have to get the bugs right too.

— In a conflict between the written specs and the
way the network actually operates, the specs

always lose.

30

Wallets

non-verifying clients are MUCH easier to
write, and a few exist

Armory has tons of security features, but
requires that you also run the reference client

MultiBit and Electrum are fast and aim to be
user friendly

Android clients exist, as do web wallets
— think carefully before using web wallets

31

Offline

* A transaction that goes to a key you own is
yours, even if you don’t know about it

* Meaning that you can print a key on paper,
then send money to that address

* If you do it right: very, very secure

32

keys

A private key is 256 bits. ANY 256 bits is a private key.

The public key is G*privkey. * is EC point multiplication on
the curve secp256k1

The result of point multiplication is (x,y) of a point on the
curve, x and y are 256 bits each

y can be calculated from x, but you get two possible
answers

The pubkey is encoded:

— Ox04<x><y>

— 0x03<x> or 0x02<x>.

* ycan be recovered from the short {compressed) forms. 2 means you
take the answer with even parity, 3 means you take the odd one.

33

addresses

[]

An address is calculated from the encoded
form of the pubkey.

pubkeyhash = RIPEMD160(SHA-256({pubkey))
Version prefix added, 0x00 for normal bitcoin

[J

[]

The whole thing is converted to base58check

— like base64, but with confusable characters
removed

— includes a 32 bit checksum

This means that the same (x,y) point can have two different addresses. This is usually
handled by pretending the other one doesn’t exist.

34

pubkey hash

* Why not just use the pubkey?

* the hash is shorter (160 bits vs. 256)

* if ECis broken some day, the pubkeys remain
hidden until use

35

transactions

* Spends one or more previous transaction outputs
— Transactions spend other transactions
— addresses have no balances
— transactions have no “sender” or “from” address

* (Creates one or more new outputs

* Simple structure:
— version (4 bytes)
— number of inputs (var_int)
— the inputs (varies)
— number of outputs (var_int)
— the outputs (varies)
— lock_time (4 bytes)

One exception is the generate transaction, which collects fees and creates new coins
through the subsidy

This slide was modified to clarify that transactions spend other transactions

transactions, 2

* TxID is the hash of the transaction
* specific outputs named by {txid,index}

37

txins

[]

The list of inputs is just a sequence of:
{txid,index} — 36 bytes
scriptLen —var_int

[J

 script — varies — we’ll come back to this one
* sequence — 4 bytes

sequence is for creating chains of transactions, it is typically the max value

38

L]

txouts

Likewise, the outputs are simple

value — 64 bit unsigned integer

pkScriptLen — var_int

pkScript - varies

39

Scripts

* Define how an output is to be redeemed
* very simple scripting language — mostly
disabled today because security is hard

* The pkScript from the output is combined
with the script from the input and evaluated

* |f it doesn’t abort, and leaves “true” (nonzero)
on the stack when done, it is valid

Soft disabled. There is a function that checks for standard-ness. If not standard, most
people won't relay it, and most miners won’t include it in a block.

40

Typical script usage

For the typical case, we need to connect a
transaction to a pubkey hash (address).

We need the pubkey to verify the signature, and
the pubkey is not published in advance

Does this pubkey produce this signature?

Does this pubkey hash to the hash recorded in
advance?

41

Script example (output)

e 76 — OP_DUP (duplicate the top stack item)

* A9 — OP_HASH160 (hash with SHA256, then
RIPEMD-160)

* 14— PUSH_14 (push the next 20 words)

* 39ebeacd446feb2a615196f5c9efdf67fae99¢369
* 88 — OP_EQUALVERIFY (abort if unequal)

* AC— OP_CHECKSIG (verify the signature)

The 20 bytes pushed is the pubkey hash, extracted from an address

42

Script example (input)

48 — push 0x48 bytes

304502... — 0x48 bytes (signature)
41 — push 0x41 bytes

04a29e... — 0x41 bytes (pubkey)

[J

[]

The 0x48 bytes is the signature
The 0x41 bytes is the pubkey

43

Script example (combined)

+ PUSH_48
* 304502... (0x48 bytes - signature)

« PUSH_41

* 04A29E... (0x41 bytes - pubkey)

« OP_DUP

« OP_HASH160

« PUSH 14

* 39EBEA... (0x14 bytes — pubkey hash)
* OP_EQUALVERIFY

* OP_CHECKSIG

Spender goes first. The person setting conditions for spending goes last.

44

Execution
« PUSH_48 Stack

« PUSH_41

* 04A29E... (0x41 bytes)
« OP_DUP

« OP_HASH160

« PUSH_14

* 39EBEA... (Ox14 bytes)
* OP_EQUALVERIFY

* OP_CHECKSIG

* 304502... (0x48 bytes) * <304502...> (signature)

First we push the signature onto the stack

The signature has a structure, basically the OpenSSL format for a EC signature

45

Second, we push the public key. This too has a structure, it is the encoded form from

before

Execution

PUSH_48 Stack

304502... (0x48 bytes) * <04A29E...> (public key)
PUSH_41 * <304502...> (sig)
04A29E... (0x41 bytes)

OP_DUP

OP_HASH160

PUSH_14

39EBEA... (0x14 bytes)

OP_EQUALVERIFY

OP_CHECKSIG

46

Execution

PUSH_48 Stack

304502... (0x48 bytes) * <04A29E...> (pubkey)
PUSH 41 * <04A29E...> {pubkey)
04A29E... (0x41 bytes) * <304502...> (sig)
OP_DUP

OP_HASH160

PUSH_14

39EBEA... (0x14 bytes)
OP_EQUALVERIFY
OP_CHECKSIG

We duplicate the top item, for reasons that will become clear in a moment

47

Execution

* PUSH 48 Stack

e 304502... (0x48 bytes) * ripe(sha(<04A29E...>))
* PUSH 41 * <04A29E...> pubkey
* 04A29E... (0x41 bytes) * <304502...> pubkey

« OP_DUP

* OP_HASH160

« PUSH_14

* 39EBEA... (0x14 bytes)
* OP_EQUALVERIFY
* OP_CHECKSIG

Now we hash the pubkey

48

Execution

* PUSH_48 Stack

e 304502... (0x48 bytes) * <39EBEA...> (pubkey
* PUSH_41 hash)

* 04A29E... (0x41 bytes) * ripe(sha(<04A29E...>))
« OP_DUP * <04A29E...> (pubkey)
« OP_HASH160 * <304502...> (sig)

« PUSH_14

* 39EBEA... (0x14 bytes)
* OP_EQUALVERIFY
* OP_CHECKSIG

Now we push the pubkey hash that was specified long ago when the txout was created

49

Execution

* PUSH 48 Stack

e 304502... (0x48 bytes) * <04A29E...> (pubkey)
* PUSH 41 * <304502...> (signature)
* 04A29E... (0x41 bytes)

« OP_DUP

« OP_HASH160

« PUSH_14

* 39EBEA... (Ox14 bytes)

* OP_EQUALVERIFY

* OP_CHECKSIG

OP_EQUALVERIFY does two things. It compares the top two stack items, and leaves either
true (1) or false (0) on the stack in their place
Then it does a verify, if the top stack item is not true, it aborts execution

This lets the sender use the hash of the pubkey, carried as an address, rather than the
pubkey itself. This is smaller, and more secure. If EC is broken some day, the hash is
unlikely to also be broken

Execution

* PUSH 48 Stack

e 304502... (0x48 bytes) * <1>(true)
« PUSH_41

* 04A29E... (0x41 bytes)

« OP_DUP

« OP_HASH160

« PUSH_14

* 39EBEA... (Ox14 bytes)

* OP_EQUALVERIFY

* OP_CHECKSIG

And finally, OP_CHECKSIG does the whole signature calculation using the pubkey and
compares it to the stored pubkey

Wait, what?

* What is now the standard transaction (pay to
pubkeyhash) was not in the system at launch
* The original was pay to pubkey instead
— OP_PUSH41
— 0x41 bytes of pubkey
— OP_CHECKSIG
* A pubkey is 8+256+256 bits
* A pubkeyhash is only 8 + 160 bits
* Scripting makes that savings possible
— Makes future improvements possible

— Don’t need to wait for someone to write it, wait for the
network to upgrade, etc.

Pubkey compression (y recovery) makes the savings a little less amazing

still gain security from not exposing your pubkey until redemption

Standard transaction types and disabled opcodes negated much of the advantage of
scripting, but only temporarily

52

More

P2SH/multisig * exchanges
payment protocol * privacy
mining hardware * coinjoin

transaction malleability JSON RPC API
signature malleability
economics

hardware wallets

53

