HHERRIHE

Overview

L.CD interface mechanical

L.CD interface electrical

Hardware & software interface options
Timing considerations

LCD commands

Display addressing

Parallel port options

Software

Interface - Mechanical

4
—
e TR

aaaaaaaaa

--

| There are several different

styles of interface layouts

N For a given layout the pins

will have the same function

The same pin numbers will

SN | 3ve the same function

across layouts

Pin# Pin# Synbol
8 bit 4 bit

1

2

3 Vee
4 RS
5 R ~W
6 E

- DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7

=
N
O O© 00!

14 1

NOTEl: On standard nodul es Vee I1s between GND and 5V: on

Level

+5V
NOTE1

H L
H L
H >L

Functi on

G ound
Modul e power
Li qui d cryst al

Regi ster sel ect,
Read/ Wit e,
Edge-sensitive Enabl e

Dat a
Dat a
Dat a
Dat a
Dat a
Dat a
Dat a
Dat a

t enper ature extended nodul es it

bi t
bi t
bi t
bi t
bi t
bi t
bi t
bi t

0O (not
1 (not
2 (not
3 (not

~NOo Oo1bh

Interface - Electrical

drive

H=dat a, L=command
L=write

H=r ead |,

used
used
used
used

I N
I N
I N
I N

4 bit
4 bit
4 bit
4 bit

I s between GND and -7V

node)
node)
node)
node)

Interface - Electrical

Back Lighting

Power may be additional interface pins or separate connections
LED simple, high power
Electro-Luminescent complex drive circuit, less power

Cold Cathode Fluorescent complex drive circuit, less power,
not usually found on char displays

Interface - Options

Hardware
8 bit
- more interface lines
- faster
4 bit
- 4 less interface lines
- needs 2 write operations

Software
Write and wait
- Write data and wait for
max time
- Simple
Check busy
- Write and check status
- May be faster
- Requires bidirectional
data bus

Interface - Timing

Control Signal Timing

If you look at the spec sheet you will find diagrams like the next
page. These are important if you are running at the maximum
speed the display can support, such as memory mapped I/0 with
a MiCro-processor.

For a parallel port or port based I/0 on a micro-processor it is
simpler (slower) we usually won't come close to these limits.

In compatibility mode, the parallel port is simulating talking to
a printer over an 8MHz AT bus. The minimum transition is
about 500ns even on a GHz machine.

Write timing — LCD controller

WRI TE:
RS X valid RS | evel X
I |
| |
| <--40ns- >| 10ns- >| | <--
______ | | | I
R 'W \ | R 'WI ow | /
| |
| <----230ns--->]
| |
| <------------- | ------ 500ns------ >|
| | |
E / \ /
20ns(max) - ->| | <-- -->| | <--20ns(max)
| <--80ns-->| |
| - - > | <--10ns

| |
DO- D7 X wvalid data_ X

Write timing - Port 1/0

RS X X X

R -W \ [\ /

Note that for “wite and wait” R/ -Wcan be tied | ow

DATA X X X X X
Bits 7-0 /-4 3-0

N
—_ 0000 OO

_ OO OO OO0 0oOod

[
)

eS| 7 7
> zggnwnc

[.CD Commands

O
NS

> % *ner—\og

D
> > % kW *Hg

>Hooooog
w

4 D3
0
0
0
1
S

C

-

-
> ™ g © O

>R o000

N
A
A A AAAA

0 = Decrement cursor position
0 = No display shift

0 = Display off

0 = Cursor off

0 = Cursor blink off

0 = Move cursor

0 = Shift left

0 = 4-bit interface

0 = 1/8 or 1/11 Duty (1 line)
0 = 5x7 dots

Address

Instruction/Description
Clear Display

Return to Home Position
Set Cursor Move Direction
Enable Display/Cursor
Cursor/Display Shift

Set Interface Length

Set CGRAM Address

Set Display Address

1 = Increment cursor position
1 = Display shift

1 = Display on

1 = Cursor on

1 = Cursor blink on

1 = Shift display

1 = Shift right

1 = 8-bit interface

1 = 1/16 Duty (2 lines)

1 = 5x10 dots

10

[.CD Commands

RS is register select 0=command, 1=data.

R/-W is read/write control O=write,1=read.

Commands are issued with R/S=0 and R/-W=0. Put the command
on the data lines, and toggle E from L->H->L.

The Clear Display and Return Home commands can take up to 1.64ms,
the rest take ~40usec.

Even with only 8 commands, it can be a bit confusing with all the options
We only need a subset of the commands to initialize the LCD.

1. Set Interface Length - use 0011 1000 8 bit interface, 2 lines,

5x7 dot characters
2. Enable Display/Cursor - use 0000 1100 display on, no cursor
3. Clear Display - use 0000 0001 no options
4. Set Cursor Move Direction - use 0000 0110 increment cursor, no shift
Then we can use Set Display Address and data writes to put characters on
the display. 11

Writing Data

After initializing per the previous slide writing starts at the first position
on line 1. To write data, we set RS=1, R/-W=0, put the ASCII character
on the data lines, and toggle E from L->H->L.

The controller has 80 bytes of data memory that are organized differently
depending on the mode.

In single line mode it starts at O offset and is linearly addressed to offset
0x4F. In some documents, you will see memory addressed as 0x80 — OxCF;
this is the actual command to set the memory address (remember
command bit 0x80 indicates display address set).

In 2 line mode the display memory is split with the first 40 bytes starting
at offset 0 (0x80) and the second line at offset 0x40 (0xCO0).

12

Display Addressing

The base controller can display 2 lines x 8 char. For each additional
8 characters, a display driver is added to handle another 2 lines x 8.
For a 1 line x 16 characters, there are two possibilities. There could
be the controller and a display driver, in which case it would look
like a single line display. The other case is to use only the controller
and treat it as a 2 line x 8 character display with the 2 “lines” on
one line. This makes a difference in how you address the second

8 characters!

Four line displays, for example 4 lines x 20 characters, the other
lines are mapped onto lines 1 and 2. Line 3 is the second half of
line 1 and line 4 is the second half of line 2.

Line 1 0x80 — 0x93

Line 2 0xCO — 0xD3
Line 3 0x94 — OxA7
Line 4 0xD4 - OxE7

13

Parallel port signals

So how do we connect to the parallel port?

D7|D6|D5|/D4|D3|D2| D1 DO

\é@é_leooooeooo/

e oeeo o6 600600

ST|S6|55(54]53

Data is easy just connect the parallel port data to LCD data.
The LCD requires 2 or 3 control lines, the parallel port has 4 available;
so there are several possibilities. We will use the connection used by

Winamp.

14

D-Type
Pin No

OO UTE WOWIN =

16
18 — 25

Parallel port connection

Hardware

Name Direction Register Inverted LCD Sig LCD pin
-Strobe Out Control Yes E 6
Data 0 Out Data Data0 7
Data 1 Out Data Datal 3
Data 2 Out Data Data?2 9
Data 3 Out Data Data3 10
Data 4 Out Data Data4 11
Data 5 Out Data Data5 12
Data 6 Out Data Data6 13
Data 7 Out Data Data? 14
-Linefeed Out Control Yes R/-W 5
Initialize Out Control RS 4
Ground Gnd Gnd 2

15

K-L UG Printer Port Board

[=
ey

-

o
% |
off

W
]

(=

c

A
=
i
o
1)
™
®

LY
il
pe 3

16

K-LUG 26 pin connector

1 2 E

R/~W/| 3 4 DO

D 6 D1

RS 7 8 D2

9 10 D3

GND| 11 | 12 D4

GND 13 14 D5

GND 15 @ 16 D6

GND| 17 18 D7
GND' 19 | 20
GND 21 @ 22
GND 23 24
GND 25 | 26

17

So what about the code?

There are several ways to talk to the parallel port
1. Direct port I/0O — requires root authority

2. Write a kernel device driver — complex (although Mark Harris has done
most of the leg work for us) and non standard

3. Use the existing parallel port device driver for device /dev/parportO
This can run in user state and it is commonly available. I used this option.

File device drivers support open, close, read, and write for normal

operation. Unfortunately toggling control port bits is not “normal operation™.
For hardware specific operations, the ioctl (i/o control) operation is
provided. We will use this for both data and control writes. The constants
are in include/linux/ppdev.h

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

