
1

Care and Feeding of Char LCD Displays

2

Overview

LCD interface mechanical

LCD interface electrical

Hardware & software interface options

Timing considerations

LCD commands

Display addressing

Parallel port options

Software

3

Interface - Mechanical

There are several different
styles of interface layouts

For a given layout the pins
will have the same function

The same pin numbers will
have the same function
across layouts

16 pin inline

14 pin dual

10pin inline

4

Interface - Electrical
Pin# Pin# Symbol Level Function
8 bit 4 bit
==== ====== ===== ====== ==========================
 1 1 Vss GND Ground
 2 2 Vcc +5V Module power
 3 3 Vee NOTE1 Liquid crystal drive
 4 4 RS H/L Register select, H=data, L=command
 5 5 R/~W H/L Read/Write, H=read , L=write
 6 6 E H->L Edge-sensitive Enable
 7 - DB0 Data bit 0 (not used in 4 bit mode)
 8 - DB1 Data bit 1 (not used in 4 bit mode)
 9 - DB2 Data bit 2 (not used in 4 bit mode)
10 - DB3 Data bit 3 (not used in 4 bit mode)
11 7 DB4 Data bit 4
12 8 DB5 Data bit 5
13 9 DB6 Data bit 6
14 10 DB7 Data bit 7

NOTE1: On standard modules Vee is between GND and 5V; on
temperature extended modules it is between GND and -7V

5

Interface - Electrical

Back Lighting

Power may be additional interface pins or separate connections

LED simple, high power

Electro-Luminescent complex drive circuit, less power

Cold Cathode Fluorescent complex drive circuit, less power,
not usually found on char displays

6

Interface - Options

Hardware Software
8 bit Write and wait

- more interface lines - Write data and wait for
- faster max time

4 bit - Simple
- 4 less interface lines Check busy
- needs 2 write operations - Write and check status

- May be faster
- Requires bidirectional

data bus

7

Interface - Timing

Control Signal Timing

If you look at the spec sheet you will find diagrams like the next
page. These are important if you are running at the maximum
speed the display can support, such as memory mapped I/O with
a micro-processor.

For a parallel port or port based I/O on a micro-processor it is
simpler (slower) we usually won't come close to these limits.
In compatibility mode, the parallel port is simulating talking to
a printer over an 8MHz AT bus. The minimum transition is
about 500ns even on a GHz machine.

8

Write timing – LCD controller

WRITE:

 ______ _____________________________ ___________
 RS ______X_________valid_RS_level______X__________
 | |
 | |
 |<--40ns->| 10ns->| |<--
 ______| | | |____________
 R/W _______________|___R/W_low____|____/_____________
 | |
 |<----230ns--->|
 | |
 |<-------------|------500ns------>|
 |______________| |_________
 E ________________/ __________________/
 20ns(max)-->||<-- -->||<--20ns(max)
 |<--80ns-->||
 | -->| |<--10ns
 __________________|_______________|________________
 D0-D7 __________________X__valid_data___X____________

9

Write timing - Port I/O

 _______ _____________ ____________________ __
RS_______X_____________X____________________X__

 ____ __ __
R/-W ________________/ ___________________/

Note that for “write and wait” R/-W can be tied low

 ______ ________ __ __ _______ _______ __
DATA ______X________X__ __X_______X_______X__
 Bits 7-0 7-4 3-0
 ___ ___ ___
E ________/ ____________/ __/ ___

 8 Bit 4 Bit

10

D7 D6 D5 D4 D3 D2 D1 D0 Instruction/Description
0 0 0 0 0 0 0 1 Clear Display
0 0 0 0 0 0 1 * Return to Home Position
0 0 0 0 0 1 ID S Set Cursor Move Direction
0 0 0 0 1 D C B Enable Display/Cursor
0 0 0 1 SC RL * * Cursor/Display Shift
0 0 1 DL N F * * Set Interface Length
0 1 A A A A A A Set CGRAM Address
1 A A A A A A A Set Display Address

ID 0 = Decrement cursor position 1 = Increment cursor position
S 0 = No display shift 1 = Display shift
D 0 = Display off 1 = Display on
C 0 = Cursor off 1 = Cursor on
B 0 = Cursor blink off 1 = Cursor blink on
SC 0 = Move cursor 1 = Shift display
RL 0 = Shift left 1 = Shift right
DL 0 = 4-bit interface 1 = 8-bit interface
N 0 = 1/8 or 1/11 Duty (1 line) 1 = 1/16 Duty (2 lines)
F 0 = 5x7 dots 1 = 5x10 dots
A Address

LCD Commands

11

LCD Commands
RS is register select 0=command, 1=data.
R/-W is read/write control 0=write,1=read.
Commands are issued with R/S=0 and R/-W=0. Put the command
on the data lines, and toggle E from L->H->L.

The Clear Display and Return Home commands can take up to 1.64ms,
the rest take ~40usec.

Even with only 8 commands, it can be a bit confusing with all the options
We only need a subset of the commands to initialize the LCD.

1. Set Interface Length - use 0011 1000 8 bit interface, 2 lines,
 5x7 dot characters
2. Enable Display/Cursor - use 0000 1100 display on, no cursor
3. Clear Display - use 0000 0001 no options
4. Set Cursor Move Direction - use 0000 0110 increment cursor, no shift
Then we can use Set Display Address and data writes to put characters on
the display.

12

Writing Data

After initializing per the previous slide writing starts at the first position
on line 1. To write data, we set RS=1, R/-W=0, put the ASCII character
on the data lines, and toggle E from L->H->L.

The controller has 80 bytes of data memory that are organized differently
depending on the mode.

In single line mode it starts at 0 offset and is linearly addressed to offset
0x4F. In some documents, you will see memory addressed as 0x80 – 0xCF;
this is the actual command to set the memory address (remember
command bit 0x80 indicates display address set).

In 2 line mode the display memory is split with the first 40 bytes starting
at offset 0 (0x80) and the second line at offset 0x40 (0xC0).

13

Display Addressing

The base controller can display 2 lines x 8 char. For each additional
8 characters, a display driver is added to handle another 2 lines x 8.
For a 1 line x 16 characters, there are two possibilities. There could
be the controller and a display driver, in which case it would look
like a single line display. The other case is to use only the controller
and treat it as a 2 line x 8 character display with the 2 “lines” on
one line. This makes a difference in how you address the second
8 characters!

Four line displays, for example 4 lines x 20 characters, the other
lines are mapped onto lines 1 and 2. Line 3 is the second half of
line 1 and line 4 is the second half of line 2.

Line 1 0x80 – 0x93
Line 2 0xC0 – 0xD3
Line 3 0x94 – 0xA7
Line 4 0xD4 - 0xE7

14

Parallel port signals
So how do we connect to the parallel port?

Data is easy just connect the parallel port data to LCD data.
The LCD requires 2 or 3 control lines, the parallel port has 4 available;
so there are several possibilities. We will use the connection used by
Winamp.

15

Parallel port connection

D-Type Hardware
Pin No Name Direction Register Inverted LCD Sig LCD pin
1 -Strobe Out Control Yes E 6
2 Data 0 Out Data Data0 7
3 Data 1 Out Data Data1 8
4 Data 2 Out Data Data2 9
5 Data 3 Out Data Data3 10
6 Data 4 Out Data Data4 11
7 Data 5 Out Data Data5 12
8 Data 6 Out Data Data6 13
9 Data 7 Out Data Data7 14
14 -Linefeed Out Control Yes R/-W 5
16 Initialize Out Control RS 4
18 – 25 Ground Gnd Gnd 2

16

K-LUG Printer Port Board

17

K-LUG 26 pin connector

1 2 E
R/~W 3 4 D0

5 6 D1
RS 7 8 D2

9 10 D3
GND 11 12 D4
GND 13 14 D5
GND 15 16 D6
GND 17 18 D7
GND 19 20

GND 21 22
GND 23 24
GND 25 26

18

So what about the code?

There are several ways to talk to the parallel port

1. Direct port I/O – requires root authority

2. Write a kernel device driver – complex (although Mark Harris has done
most of the leg work for us) and non standard

3. Use the existing parallel port device driver for device /dev/parport0
This can run in user state and it is commonly available. I used this option.

File device drivers support open, close, read, and write for normal
operation. Unfortunately toggling control port bits is not “normal operation”.
For hardware specific operations, the ioctl (i/o control) operation is
provided. We will use this for both data and control writes. The constants
are in include/linux/ppdev.h

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

